Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484697

RESUMO

MOTIVATION: To provide high quality, computationally tractable annotation of binding sites for biologically relevant (cognate) ligands in UniProtKB using the chemical ontology ChEBI (Chemical Entities of Biological Interest), to better support efforts to study and predict functionally relevant interactions between protein sequences and structures and small molecule ligands. RESULTS: We structured the data model for cognate ligand binding site annotations in UniProtKB and performed a complete reannotation of all cognate ligand binding sites using stable unique identifiers from ChEBI, which we now use as the reference vocabulary for all such annotations. We developed improved search and query facilities for cognate ligands in the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that ChEBI provides. AVAILABILITY AND IMPLEMENTATION: Binding site annotations for cognate ligands described using ChEBI are available for UniProtKB protein sequence records in several formats (text, XML and RDF) and are freely available to query and download through the UniProt website (www.uniprot.org), REST API (www.uniprot.org/help/api), SPARQL endpoint (sparql.uniprot.org/) and FTP site (https://ftp.uniprot.org/pub/databases/uniprot/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Bases de Dados de Proteínas , Ligantes , Sequência de Aminoácidos , Sítios de Ligação , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 50(D1): D693-D700, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755880

RESUMO

Rhea (https://www.rhea-db.org) is an expert-curated knowledgebase of biochemical reactions based on the chemical ontology ChEBI (Chemical Entities of Biological Interest) (https://www.ebi.ac.uk/chebi). In this paper, we describe a number of key developments in Rhea since our last report in the database issue of Nucleic Acids Research in 2019. These include improved reaction coverage in Rhea, the adoption of Rhea as the reference vocabulary for enzyme annotation in the UniProt knowledgebase UniProtKB (https://www.uniprot.org), the development of a new Rhea website, and the designation of Rhea as an ELIXIR Core Data Resource. We hope that these and other developments will enhance the utility of Rhea as a reference resource to study and engineer enzymes and the metabolic systems in which they function.


Assuntos
Fenômenos Químicos , Bases de Dados Factuais , Software , Animais , Humanos , Internet , Bases de Conhecimento
4.
Metabolites ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445429

RESUMO

The UniProt Knowledgebase UniProtKB is a comprehensive, high-quality, and freely accessible resource of protein sequences and functional annotation that covers genomes and proteomes from tens of thousands of taxa, including a broad range of plants and microorganisms producing natural products of medical, nutritional, and agronomical interest. Here we describe work that enhances the utility of UniProtKB as a support for both the study of natural products and for their discovery. The foundation of this work is an improved representation of natural product metabolism in UniProtKB using Rhea, an expert-curated knowledgebase of biochemical reactions, that is built on the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Knowledge of natural products and precursors is captured in ChEBI, enzyme-catalyzed reactions in Rhea, and enzymes in UniProtKB/Swiss-Prot, thereby linking chemical structure data directly to protein knowledge. We provide a practical demonstration of how users can search UniProtKB for protein knowledge relevant to natural products through interactive or programmatic queries using metabolite names and synonyms, chemical identifiers, chemical classes, and chemical structures and show how to federate UniProtKB with other data and knowledge resources and tools using semantic web technologies such as RDF and SPARQL. All UniProtKB data are freely available for download in a broad range of formats for users to further mine or exploit as an annotation source, to enrich other natural product datasets and databases.

5.
Bioinformatics ; 36(17): 4643-4648, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32399560

RESUMO

MOTIVATION: The number of protein records in the UniProt Knowledgebase (UniProtKB: https://www.uniprot.org) continues to grow rapidly as a result of genome sequencing and the prediction of protein-coding genes. Providing functional annotation for these proteins presents a significant and continuing challenge. RESULTS: In response to this challenge, UniProt has developed a method of annotation, known as UniRule, based on expertly curated rules, which integrates related systems (RuleBase, HAMAP, PIRSR, PIRNR) developed by the members of the UniProt consortium. UniRule uses protein family signatures from InterPro, combined with taxonomic and other constraints, to select sets of reviewed proteins which have common functional properties supported by experimental evidence. This annotation is propagated to unreviewed records in UniProtKB that meet the same selection criteria, most of which do not have (and are never likely to have) experimentally verified functional annotation. Release 2020_01 of UniProtKB contains 6496 UniRule rules which provide annotation for 53 million proteins, accounting for 30% of the 178 million records in UniProtKB. UniRule provides scalable enrichment of annotation in UniProtKB. AVAILABILITY AND IMPLEMENTATION: UniRule rules are integrated into UniProtKB and can be viewed at https://www.uniprot.org/unirule/. UniRule rules and the code required to run the rules, are publicly available for researchers who wish to annotate their own sequences. The implementation used to run the rules is known as UniFIRE and is available at https://gitlab.ebi.ac.uk/uniprot-public/unifire.


Assuntos
Bases de Conhecimento , Proteínas , Mapeamento Cromossômico , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/genética
6.
Gigascience ; 9(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034905

RESUMO

BACKGROUND: Genome and proteome annotation pipelines are generally custom built and not easily reusable by other groups. This leads to duplication of effort, increased costs, and suboptimal annotation quality. One way to address these issues is to encourage the adoption of annotation standards and technological solutions that enable the sharing of biological knowledge and tools for genome and proteome annotation. RESULTS: Here we demonstrate one approach to generate portable genome and proteome annotation pipelines that users can run without recourse to custom software. This proof of concept uses our own rule-based annotation pipeline HAMAP, which provides functional annotation for protein sequences to the same depth and quality as UniProtKB/Swiss-Prot, and the World Wide Web Consortium (W3C) standards Resource Description Framework (RDF) and SPARQL (a recursive acronym for the SPARQL Protocol and RDF Query Language). We translate complex HAMAP rules into the W3C standard SPARQL 1.1 syntax, and then apply them to protein sequences in RDF format using freely available SPARQL engines. This approach supports the generation of annotation that is identical to that generated by our own in-house pipeline, using standard, off-the-shelf solutions, and is applicable to any genome or proteome annotation pipeline. CONCLUSIONS: HAMAP SPARQL rules are freely available for download from the HAMAP FTP site, ftp://ftp.expasy.org/databases/hamap/sparql/, under the CC-BY-ND 4.0 license. The annotations generated by the rules are under the CC-BY 4.0 license. A tutorial and supplementary code to use HAMAP as SPARQL are available on GitHub at https://github.com/sib-swiss/HAMAP-SPARQL, and general documentation about HAMAP can be found on the HAMAP website at https://hamap.expasy.org.


Assuntos
Genômica/métodos , Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Software/normas , Animais , Genômica/normas , Humanos , Anotação de Sequência Molecular/normas , Análise de Sequência de DNA/normas , Análise de Sequência de Proteína/normas
7.
Bioinformatics ; 36(6): 1896-1901, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688925

RESUMO

MOTIVATION: To provide high quality computationally tractable enzyme annotation in UniProtKB using Rhea, a comprehensive expert-curated knowledgebase of biochemical reactions which describes reaction participants using the ChEBI (Chemical Entities of Biological Interest) ontology. RESULTS: We replaced existing textual descriptions of biochemical reactions in UniProtKB with their equivalents from Rhea, which is now the standard for annotation of enzymatic reactions in UniProtKB. We developed improved search and query facilities for the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that Rhea and ChEBI provide. AVAILABILITY AND IMPLEMENTATION: UniProtKB at https://www.uniprot.org; UniProt REST API at https://www.uniprot.org/help/api; UniProt SPARQL endpoint at https://sparql.uniprot.org/; Rhea at https://www.rhea-db.org.


Assuntos
Reiformes , Animais , Bases de Dados de Proteínas , Bases de Conhecimento
8.
Nucleic Acids Res ; 47(D1): D596-D600, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30272209

RESUMO

Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of over 11 000 expert-curated biochemical reactions that uses chemical entities from the ChEBI ontology to represent reaction participants. Originally designed as an annotation vocabulary for the UniProt Knowledgebase (UniProtKB), Rhea also provides reaction data for a range of other core knowledgebases and data repositories including ChEBI and MetaboLights. Here we describe recent developments in Rhea, focusing on a new resource description framework representation of Rhea reaction data and an SPARQL endpoint (https://sparql.rhea-db.org/sparql) that provides access to it. We demonstrate how federated queries that combine the Rhea SPARQL endpoint and other SPARQL endpoints such as that of UniProt can provide improved metabolite annotation and support integrative analyses that link the metabolome through the proteome to the transcriptome and genome. These developments will significantly boost the utility of Rhea as a means to link chemistry and biology for a more holistic understanding of biological systems and their function in health and disease.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Metabolômica/métodos , Software/normas , Humanos , Bases de Conhecimento , Biologia de Sistemas/métodos
10.
Nucleic Acids Res ; 45(D1): D415-D418, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27789701

RESUMO

Rhea (http://www.rhea-db.org) is a comprehensive and non-redundant resource of expert-curated biochemical reactions designed for the functional annotation of enzymes and the description of metabolic networks. Rhea describes enzyme-catalyzed reactions covering the IUBMB Enzyme Nomenclature list as well as additional reactions, including spontaneously occurring reactions, using entities from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Here we describe developments in Rhea since our last report in the database issue of Nucleic Acids Research. These include the first implementation of a simple hierarchical classification of reactions, improved coverage of the IUBMB Enzyme Nomenclature list and additional reactions through continuing expert curation, and the development of a new website to serve this improved dataset.

11.
Nucleic Acids Res ; 43(Database issue): D1064-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348399

RESUMO

HAMAP (High-quality Automated and Manual Annotation of Proteins--available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Homologia de Sequência de Aminoácidos , Humanos , Internet , Proteínas/classificação
12.
Nucleic Acids Res ; 43(Database issue): D459-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332395

RESUMO

Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing stoichiometrically balanced enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list and additional reactions), transport reactions and spontaneously occurring reactions. Rhea reactions are extensively curated with links to source literature and are mapped to other publicly available enzyme and pathway databases such as Reactome, BioCyc, KEGG and UniPathway, through manual curation and computational methods. Here we describe developments in Rhea since our last report in the 2012 database issue of Nucleic Acids Research. These include significant growth in the number of Rhea reactions and the inclusion of reactions involving complex macromolecules such as proteins, nucleic acids and other polymers that lie outside the scope of ChEBI. Together these developments will significantly increase the utility of Rhea as a tool for the description, analysis and reconciliation of genome-scale metabolic models.


Assuntos
Bases de Dados de Compostos Químicos , Enzimas/metabolismo , Redes e Vias Metabólicas , Fenômenos Bioquímicos , Biopolímeros/metabolismo , Genômica , Internet , Redes e Vias Metabólicas/genética
13.
Nucleic Acids Res ; 41(Database issue): D584-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193261

RESUMO

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/classificação , Eucariotos/genética , Internet
14.
Nucleic Acids Res ; 40(Database issue): D754-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22135291

RESUMO

Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and models.


Assuntos
Fenômenos Bioquímicos , Bases de Dados Factuais , Enzimas/metabolismo , Internet , Redes e Vias Metabólicas , Software
15.
Nucleic Acids Res ; 40(Database issue): D761-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102589

RESUMO

UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.


Assuntos
Bases de Dados Factuais , Redes e Vias Metabólicas , Bases de Dados de Proteínas , Enzimas/metabolismo , Lisina/biossíntese , Anotação de Sequência Molecular
16.
Nucleic Acids Res ; 37(Database issue): D471-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18849571

RESUMO

The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline. The proteome database comprises biological and sequence information for each completely sequenced microbial proteome, and it offers several tools for CDS searches, BLAST options and retrieval of specific sets of proteins. The family database currently comprises more than 1500 manually curated protein families and their annotation templates that are used to annotate proteins that belong to one of the HAMAP families. On the HAMAP website, individual sequences as well as whole genomes can be scanned against all HAMAP families. The system provides warnings for the absence of conserved amino acid residues, unusual sequence length, etc. Thanks to the implementation of HAMAP, more than 200,000 microbial proteins have been fully annotated in UniProtKB/Swiss-Prot (HAMAP website: http://www.expasy.org/sprot/hamap).


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Bases de Dados de Proteínas , Proteômica , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Genômica , Proteoma/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Software
17.
Comput Biol Chem ; 27(1): 49-58, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12798039

RESUMO

Large-scale sequencing of prokaryotic genomes demands the automation of certain annotation tasks currently manually performed in the production of the SWISS-PROT protein knowledgebase. The HAMAP project, or 'High-quality Automated and Manual Annotation of microbial Proteomes', aims to integrate manual and automatic annotation methods in order to enhance the speed of the curation process while preserving the quality of the database annotation. Automatic annotation is only applied to entries that belong to manually defined orthologous families and to entries with no identifiable similarities (ORFans). Many checks are enforced in order to prevent the propagation of wrong annotation and to spot problematic cases, which are channelled to manual curation. The results of this annotation are integrated in SWISS-PROT, and a website is provided at http://www.expasy.org/sprot/hamap/.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/fisiologia , Sistemas de Gerenciamento de Base de Dados/tendências , Bases de Dados de Proteínas/classificação , Bases de Dados de Proteínas/normas , Proteoma/classificação , Proteoma/fisiologia , Sequência de Aminoácidos , Sistemas de Gerenciamento de Base de Dados/normas , Genoma Bacteriano , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...